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A Wiener-Hopf-Type Analysis of Microstrips
Printed on Uniaxial Substrates: Effects
of the Substrate Thickness

George A. Kyriacou, Member, IEEE, and John N. Sahalos, Senior Member, IEEE

Abstract—A Wiener-Hopf-type analysis of the canonical prob-
lem of a TEM wave obliquely incident at the edge of the truncated
upper conductor of a parallel plate waveguide loaded with a
uniaxial anisotropic dielectric is presented. A numerical inte-
gration scheme as well as a thin substrate approximation for
the reflection coefficient is given. The influence of the dielectric
anisotropy and the slab thickness on the reflection coefficient and
the edge admittance are investigated. Numerical results show the
importance of the dielectric anisotropy and the expected effects
in microstrip applications.

[. INTRODUCTION

LOT OF substrate materials used in the fabrication of

microstrip lines or patch antennas exhibit a dielectric
anisotropy. The anisotropy is either intrinsic of the material
or artificially caused by the substrate manufacturing process.
Moreover, crystalline substrates are preferable in some appli-
cations because they have certain advantages over ceramics,
such as higher homogeneity, lower losses, and lower varia-
tions from sample to sample. Examples of monocrystalline
dielectrics suggested for use as substrates include: monocrys-
talline sapphire, with relative permittivity along the principal
crystal axis )| =11.6, and perpendicular to that ¢, =9.4
and monocrystalline magnesium fluoride with £ =4.826 and
€1 =5.5. Ceramic Impregnated teflon, like Epsilam 10 with
g =10.2 and £, =13.0, is an example of artificially caused
uniaxial anisotropy. The substrate anisotropy must be taken
into account because it can be used to improve the performance
of printed lines and antennas.

Although many studies have been presented on transmission
lines (see an excellent review article written by Alexopoulos
[1] and the references therein), there are rather few works (e.g.,
[2]-14], [12]) in the field of antennas. Also, some recent works
are studying the characterization of microstrip discontinuities
patterned on uniaxial anisotropic substrates (e.g., [13]). At
the same time the interest of the investigators is extending
toward the inclusion of an also uniaxial superstrate [14], [15].
In our previous study [4], the Wiener-Hopf technique has
been applied to solve the canonical problem of a TEM wave
obliquely incident on the truncation of the upper plate of a
parallel plate waveguide loaded with a uniaxially anisotropic
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dielectric slab. Moreover, the integrals arising from the solu-
tion of the Wiener-Hopf equations have been approximated in
closed form for the usual case of electrically thin substrates.
This work, [4], could be considered as an extension of the
studies by Kuester and Chang [5], [6]. The validity of [4]
has been tested in two ways. First, letting the anisotropy ratio
be equal to one (or )] = £, = &,). It was verified that the
infinite integrals and the closed form expressions were exactly
reduced to the corresponding ones of the isotropic problem
[5], [6]. Second, by comparing the numerical results for the
resonant frequency of rectangular patch antennas with those
given by Nelson [3] and Pozar [2]. It was found that they
were in very good agreement.

Our present effort has to do with the numerical evaluation
of the infinite Sommerfeld-type integrals involved in the field
expressions and the application of the theory in the analysis
of microstrip antennas. The numerical integration will show
the limits of the thin substrate approximation and will help
investigate new applications with electrically thick substrates.

In order for this paper to be self-sustained, we first summa-
rize the formulation given in [4].

II. FORMULATION OF THE WIENER-HOPF
EQUATIONS FOR THE UNIAXIAL SUBSTRATE

Consider a vertically polarized TEM wave obliquely in-
cident (at an angle ®) on the edge of the truncated upper
conductor of an otherwise infinite parallel plate waveguide
loaded with an infinitely extended uniaxial dielectric slab (see
Fig. 1). The uniaxial dielectric is assumed to be fabricated
(or cut) with its optical axis perpendicular to the conductor
plane (along the z-axis). Let the relative dielectric constant
along the optical axis be ¢, = ¢) and the one transverse
to the optical axis be e, = &, = €. The corresponding
refraction indices are n| = e[| and n| = \/ﬁ;?j. The
vertically polarized TEM wave can be expressed as E. =
exp(jko(£x — ay)], where a = n)jsinp, £ = njjcosp and ko
is the wavenumber in free space. The scattered field (reflected
and radiated) by the edge can be obtained with the adoption
of the continuous Fourier spectrum in conjunction with the
Wiener-Hopf technique.

In order to get an analytical solution, Maxwell equations are
first simplified by considering: 1) time harmonic fields of the
form €7@, 2) propagation of the incident and scattered field
in the y-direction, as e ik0ay  which givgs /0y — —jkoa,
and 3) typical Fourier transform pair {f(A), f{x)} used in
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Wiener-Hopf approaches in the z-direction (perpendicular to
the edge). The transformed function f()) is considered as the
summation of two functions f(\) = f_(\)+ f.(\) defined in
the intervals z € (—oc,0) and (0, +00), respectively, where
F-(\) and f,()\) are analytic in the lower and the upper half
of the complex A-plane correspondingly. This transform gives
the simplification 8/0x — —jkoA.

Furthermore, the “hybrid mode” technique is applied by
considering the scattered field to be given as a superposition
of LSE or TE, (with £, = 0) and LSM or TM, (with
H, = 0) modes. Using all the above simplifications the
field components are expressed in terms of HX®= and £T™-,
also the wave equations for these two z-components are
obtained. Applying the radiation condition as well as the
boundary conditions for the tangential electric field at the
infinite metallic ground plane (z = 0) and at the air-dielectric
interface (z = d), the scattered field expressions are given as
follows:

Air region (z > d)

~§ _ Eoe._kouo(z—d) and ﬁ; — HO e—kouo(z~—d) (2a)
B = T (M~ af)uoBn — o + ) Ho)
o g—houo(z—d) (2b)
~ s ] N ~ -7 7 0
H =—2 - Hy — = A E
t a? + A2 {( T O‘y)uo CO (04.'1} + y) O}
o o~ kouo(z=d) (20)

where up = VA2 +a? —1, Re{up} > 0and o = 1207 Q,
the characteristic impedance of free space.
Dielectric region(z < d)

- cosh(kotn22) - sinh(koun12)
B = g, SN0Un22) i = g, S Founiz)
“ cosh(kounad) and @ sinh(koun1d) (32)
=8 J & o ~ Un2 Sinh(ko’u,ngz)
E, = () (ag -
ET a2+ A2 { <£L) (A8 - ag) cosh(kounad)
X En — jlopr (ad + M)
Sinh(koU,uZ)
sinh(kounl d) Hn (3b)
~s j . \ Un1 cosh{kotn12)
i _ _
P a2 4 ,\2{ (A —ag) sinh(kgup1d) "
+j (ﬂ> (a + Ag)
o
cosh(kounz2)
cosh (kotunzd) "} (3¢)
where

Uny = \/m’ a]’ld Re{unl} Z 0

Uz = (n1/m)/A* +o? —nf, and Re{uns} > 0.

The Wiener-Hopf equations for the electric and the magnetic
fields can be obtained by applying the boundary conditions for
the normal to the interface electric flux density component D,
and the tangential magnetic field H;, respectively. Namely,
D, and H, are continuous at the air dielectric interface (z =
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Fig. 1. A TEM wave obliquely incident on the edge of the truncated upper
conductor of an infinite extend grounded uniaxial anisotropic dielectric slab.

d,z < 0), and discontinuous on the truncated upper conductor
(z = d,z > 0) by the amounts of the induced surface charge
p°(x) and current J; = 2xH densities, correspondingly. The
electric field is
B3O\ z = d¥) = e B2\, 2 = d7) — 7 (\) e + 55.(N) /o
“4)
where p%.(A), 5 (A) are the Fourier transforms of the surface
charge densities, on the truncated upper conductor associated
with the scattered and the incident field, respectively. 5 ()
can be explicitly found by applying the corresponding bound-
ary condition. Likewise, the Wiener-Hopf equation for the
magnetic field is

i\ z=dY)—H (A z=d")=j1(\) (5)

where H® =V, - H ;s and j, () is the Fourier transform of
the quantity —V; - [2 x J(z)].

_Inaway similar to that of [5]-[7], two functions F (A) and
G_(X) are correspondingly defined as the Fourier transform
of quantities proportional to the total charge p; and the total
current J; densities induced on the truncated upper conductor.
The unknown field spectral amplitudes (functions) (Ey, E,,)
and (Hy, H,) appearing in (2) and (3) are then expressed
through the previously established boundary conditions as

el F_(\)

By = j§7 A d l?n = —— 6
0 (A)/ug  an €| Un2 tanh(kounad) ©

Hy=jG_(\)/¢ and anji;—fﬁ).

Finally, the Wiener-Hopf vequation for the electric field takes
the form

Q)

P = 5 ()
€0

F_(A) = Q(N) (8)

where
Uln2 tanh(kounad)
€Uy + Ung tanh(kounad)

Qe(N) =

)
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while, that for the magnetic field

i)

G-(N) = Qm(N)= (10)
Jweg

where

. 11
Urthg 4+ Uny COth(kounld) an

For the solution of the Wiener-Hopf equations it is necessary
to perform a factorization of the functions Q.()\) and @,,,()\)
into a product Q4 (A)Q_(X), where Q4 (A) is a “positive”
and Q_(\) is a “negative” function, in the sense that they are
analytic in the upper and lower complex A-half planes. The
factorization technique, given by Mittra and Lee [8], helps to
find a solution of the following form:

P _j@ nﬁ — A +ia tanh(A)
7r \/nﬁT a2 — jatanh(A)
Rl LACSEVACETE D IVE (12)
G- =~ for ~ a2
P AR A s
« (13)
W — cosh(A) — jasinh(A)
where
. EJ_
fe(A) =7 ln
(Zﬁ tel "H) A(Var=T-42)
2 dw
+ 2 /0 tn{ge(w)} —5—3 (142)
1
() = il
f() -] {1+ﬂrk0d\/a2_1—'7)\}
L2 / fnfgm(u (14b)
The functions g.(A) and ¢ ()) are
(ii +ey )uo tanh(kounad)
ge(A) = Unae Lo + Un2 tanh(kounad)] 2
) = (1 + pr)uo (15b)

Pt + Uny coth(kotin1d)

and

Ale) = ; /0 tn
§ {EJ_'U;() tanh{kounod)[prtg + tn1 coth(koty1d)] }

Upzle s ug + 2tz tanh(kor,,2d)]

dX

X m (15¢)

In order for the above integrals to have an efficient numerical
convergence, the argument of the natural logarithm should
approach unity as the integration variable (A) goes to infinity.
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This is actually true for all of them except A(a) [see 15(c)]
which, in order to satisfy these conditions, is modified to

N _1 N 5_1_(1+Mr) @ ~
Ale) = 21 {(6J_/E||)+€J_(7U_/nll)}+ W/O

X f’n{ (e/en) + e1(ni/ny)
1+
ug tanh(kounad) [t ug + un1 coth(kguy1d)]
. Un2 [E_LU() + Upao tanh(kzoungd)] }
o dA
A2 +a?

(15d)

From the above expressions all the components of the electric
and magnetic fields can be obtained through the functions
F_()\) and G_()\) in the Fourier spectrum domain. An inverse
Fourier transform is needed to get their expressions in the real
space domain. This is a quite complicated task, since the field
spectral components are already expressed as Sommerfeld type
integrals.

Near the edge, higher-order modes are excited, but most
of them are evanescent type modes and they vanish at a
practically small distance. Therefore, only the propagating
modes will exist at some distance from the edge. The dominant
mode which always exists is again a vertically polarized TEM-
reflected wave. This wave can be obtained with the help of a
reflection coefficient, as

(E7)
(EL)TEM l2=0
13’_()\: , nﬁ —a2)

jT ASSee
kod\/nﬁ — o2

where X (a) after some algebraic manipulations turn out to be

= f(=y/m} - e?). a7

The contribution of the integral involved in the f.(\) expres-

Frem(a) =

= = eI X(a)

(16)

atanh(A)

2
n
Il

X(a) =2tan™!
— a2

sion at the pole w — A = + nﬁ — a2 is extracted and f, is

expressed as a principal value integral more properly suited for
numerical integration (since the pole singularity is extracted).

That is
\/nlzl —a?

Vaz -1

2 o0 dA
_;anﬁ —()42],:’\/'\/0 én{qe(/\)}m

where for convenience the integration variable is changed from
w to A

It is important to note that, by letting the anisotropy ratio
equal to one, namely n; = n) = n orel = g = &, the
expressions, either for the field components or the Wiener-
Hopf equations solution, are exactly reduced to those of the
isotropic case given by Chang and Kuester [5].

fe(“ n|2| — a2) = tan"l

18
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The TEM reflection coefficient can be calculated either
by using numerical integration or the thin substrate approx-
imation. With the knowledge of I'rgy the open end edge
admittance Y. can be evaluated

. 1 —I'rem
Y, = G, + jB. = Yy———1EM
T 1+ Trem

1-— er(O‘) : X 9

0T arX(@ —j¥o tan(X (a)). 19

G., B, are the edge conductance and edge susceptance, re-
spectively. Yy is the characteristic admittance of the parallel
plate waveguide loaded with a uniaxial dielectric slab. The ad-
mittance Yy, related to the Z-polarized TEM wave propagating
in this waveguide, can be defined as the ratio of the current
per unit length flowing on the conductors in the direction of
propagation to the voltage developed between them. Using for
simplicity the incident TEM wave components (the same result
can be obtained from the scattered TEM wave), it is found that
Yo = [H{|/(Eid) or Yo = ny/(prCod)-

III. SURFACE WAVES, CUTOFF FREQUENCIES,
AND APPROXIMATE WAVENUMBERS

The LSE and LSM surface wave characteristic equations
can be obtained by setting, respectively the denominators of
Q. and @, in (9) and (11) equal to zero. In order to determine
their cutoff frequencies or the modes’ turn on conditions, a
clarifying “graphical” solution of such transcendental equa-
tions, used by many authors, e.g. [10], is applied. For the LSE

modes, let us define their wavenumber ay,, as o, = A*+a?,

and let n!?l — 02, = keefko, \JO2, —1 = he/ko, Una =
Jno/ny) - kee/ko and ug = he/ko. Using these definitions

the L.SE modes characteristic equation becomes

LEy tan{n—J‘kce : d] . (202)
ny| ||
Also the unknowns k.. and h. are simply related as
k%, + hZ = kg(nf — 1) (20b)

The above two equations must be solved simultaneously. Re-
arranging, we get a form more suitable for graphical solution

(kcedn—'L)tan [kced”—l} e 2 (hed”—l)
| | ni\ " ony

2 2 2
koodZt ) + (hedﬁi) = (kgd2E fn2 1) =42,
)| )| ny VI ¢

(20d)

(20c)

In order to get a graphical representation (20c) and (20d) can
be plotted (see [10] for the isotropic case) on an axis system
keed(n 1 /n) versus hed(n /n) ). Equation (20d) represents
a circle about the origin with radius r.. Moreover, recalling
the restriction Re(ug) > 0, the valid solutions (points where
the two curves intercept each other) are only those giving
he > 0. Since the curve of (20c) passes always through the
origin and is lying on the positive half plane, there is always a
valid first-order solution. This solution corresponds to the first
LSE mode, which is then always excited. Furthermore, as the
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radius r, becomes larger (thicker substrate kod ' or larger
anisotropy ratio (n/ny) /), higher order LSE modes are
excited. Valid solutions (h. > 0) are obtained for r. > pm.
The turn on condition of the p.th mode is defined as r. = p.7,
which gives

kod = [n? —1=per with p,=0,1,2,... (la)
|
with a cutoff frequency
ferp. = CPe / {2d2—ﬂ/nﬁ ~ 1} (21b)
I

c is the free space light velocity.
The LSM modes excitation can also be examined in a
similar manner. Consider the wavenumber to be apm, defined

as a2, = N +a’and /n] — o2, = kem/ko, /02, —1=
hm/ko, Upl = jkcm/ko and Uy = hm/ko.

The LSM characteristic equation along with the relation
between k., and h,, result in the following two simultaneous

transcendental equations

—(kemd) cot (kemd) = pir(Amd) (22a)

2
(kemd)? + (hppd)? = (kod,/ni - 1) =72 (22b)

The above equations can be graphically examined by plotting
them in a h,,d versus k.,,d system. Again we have to recall
the restriction Re(ug) > 0, which means that valid solutions
must satisfy A, > 0. This condition can only be met when
the radius of the circle (about the origin) defined by (22b)
becomes larger than x/2, namely r, > =/2. This fact
gives the important result that there isn’t any LSM surface
wave excitation until the slab thickness becomes thick so that
Tm > ™/2. When the slab thickness increases even more, there
1s a possibility for higher-order LSM mode excitations. Their
turn on condition i r,, > (2g,, — 1)7/2, where ¢,, is the
LSM mode order. This mode can be expressed as

kody/n% — 1> (2¢m — )x/2 where ¢ =1,2,3,...
(23)
The corresponding cutoff frequencies can then defined as

feram = (2qm — 1)c/{4d\/ﬁ€__1},

For the first LSM mode the cutoff frequency can be
units  as  forsmi(GH,) =

(24)

expressed in prescribed

75/{d(mm)y/n?% — 1}.

Even more interesting expressions are the first LSM and
the second LSE modes turn on conditions in terms of the
normalized slab thickness d/A

LSM; turn on: d/)\:l/{41/ni——1}
LSE; turn on: d/)\:l/{Qn—J‘,/nz—l}. (25b)
ny| [l

For example, considering a non-magnetic dielectric slab, the
LSM; turn on condition for e; =9.6 is d/A >0.085 and for

(252)
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er =13 is d/A 20.072. Also, if e =13 and g =10.2 the
LSE; turn on condition is d/A >0.146.

Summarizing, we can say that the first LSE mode is always
excited. With an increase in the slab thickness, usually the first
LSM can be turned on, followed by the second LSE mode.

During the numerical integration for the calculation of either
the scattered field components or just the TEM reflection
coefficient, the exact location of the surface wave poles a,,,
and g, is always needed. The most convenient manner
to solve the characteristic equations is the use of iterative
schemes, like the Newton-Raphson. These schemes always
need a suitable starting value for the root to achieve fast
convergence. For this reason the first mode wavenumbers are
estimated by using the electrically thin substrate (kod < 1)
approximation, which gives ‘
pr (o) (nf — 1)

~1 .
kod<<1 + 2nﬁ (26)

Qp 1

The corresponding expression for the first LSM mode is

L\ 1/2
=d1 — .
kod<1 { + (Mkod) }

Of course, before attempting to solve for the roots, we first
have to check if the corresponding turn on condition has been
established.

7)

Opm1

IV. A THIN SUBSTRATE APPROXIMATION

The electrically thin substrate (kgd < 1) is often encoun-
tered in practical applications. Moreover, in applications such
as wide microstrip lines and patch antennas the characteristic
equations for the effective dielectric constant, the resonant fre-
quency and the input impedance involve the above-developed
reflection coefficient with multiple arguments. Therefore, the
calculation of I'rgyr must be effective and fast, which means
that it cannot be achieved using numerical integration. So, a
thin substrate approximation, in a manner similar to that of
Kuester ef al. [6], using a Mellin transform, is important. The
closed form expressions obtained for the two integrals A{a)
and f.(«) are given in [4].

In the general case of electrically thick substrate or when
more accurate results are needed, this thin substrate approx-
imation can be used as a first step in the solution of patch
antennas transverse resonance characteristic equations.

V. INTEGRATION PATH AND EFFECTS
OF SINGULARITY LOCATIONS

A numerical integration scheme to calculate the TEM reflec-
tion coefficient as a function of the substrate thickness is used.
The involved integrals to be evaluated numerically are A(«)
and fo(—, /nlzl — «?), which appear in (15d) and (18). First,
the integrand singularities must be defined and the integration
contour must then be properly deformed to avoid them.

Both integrands possess a pair of branch cuts at ug = 0
or A = +jva?—1 as well as a set of LSE poles at

A=A = £,/a2 —a?, where o, is the corresponding
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LSE mode wavenumber obtained from the solution of their
characteristic equation. For the substrate thickness usually
used in practical applications, only the first LSE mode is
excited. The corresponding wavenumber «,_; is calculated
from the solution of the characteristic equation with a 10~
error tolerance by using a Newton-Raphson technique.

The contribution of the pole located at A = nﬁ ~a?to
the f. integral, has already been taken into account in (18) as
a Cauchy principal value. For this last approach we have to
keep in mind that an integration path along the real A-axis is
assumed. Also, we must take into account that the substrate is
considered to be lossless, so that this pole lies on the real axis,
otherwise it will be shifted to the lower complex A-half plane.

Additionally, the integrand of the function A(a) possess a
pair of simple poles on the Im(A) axis at A = +ja. Moreover,

if the substrate is thick enough then a set of LSM poles will
also appear on the real axis at A = +\,, = +,/02, — a2
Usually in practice none LSM mode is excited and only for
quite thick substrates just the first one is turned on, according
to the condition (23).

Furthermore, some terms are not singular (removable singu-
larities) but they may cause numerical instabilities if they are
not properly accounted for. Thus, in both integrands the term
“tanh(kodung)/un” in the limit when w,» — 0, must be
replaced by its limiting value kqd. Similarly, the f. integrand
term w3 - coth(kodu,1) at the limit w,; — 0 is replaced by
1/kod.

It is obvious that the location of the above singularities
depends upon the value of the propagation constant along the
y-axis o = ny sin(p), where @ is the angle of incidence.
Considering the usual practical case where the slab thickness
is such that only LSE; is excited and keeping in mind that
always a1 > 1. We distinguish three cases for the singularity
locations.

1) First case ap,1 < a < nj: All singularities, except
that of the f. pole at A =

on the Tm()\) axis. Since, it is « > 1,up is purely
real. From (2) we can see that the electromagnetic field
in the air region decays exponentially, which means
that there isn’t any “sky wave radiation.” Also, it has
been proved by Chang er al. [5], that the surface wave
propagating in the dielectric away from the open edge
(area without upper conductor, negative z-direction)

1/nﬁ — a2, are located

behaves as exp(kg,/a? — a2 ). So, for the case a >

ap, 1, it decays exponentially as it propagates away from
the edge.

Moreover, as can be seen in the next section, X (a) is
real and consequently, the reflection coefficient magni-
tude becomes unity. This phenomenon corresponds to a
total reflection and can be utilized to guide electromag-
netic waves in the y-direction. Such an application is the
study of wide microstrip lines.

2) Second case 1 < o < ap,1 < n)): Again there is no
sky wave radiation since uy remains purely real and
the corresponding branch cut lies on the Im()\) axis.
The surface wave pole is moved on the Re()\) axis and
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"’“nz‘iz Vl;az Vo %-a?
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| 7
At ==V s 2 —q 2 l-a
o1 @pe1”a Ae1= Vdpe1 —a?
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Fig, 2. Integration path for the third case 0 < o < 1. (a) Path for the integrand of function fe. (b) Path for the integrand of function A(c«). The

pole An, exists only for thick substrates, according to condition (27a).

the integration contour must be deformed to avoid it.
A part of the incident energy will be propagated in
the negative z-direction in the form of surface waves
as exp(jko /a2 — a?z). Moreover, the function X («)
becomes complex and the magnitude of the reflection
coefficient becomes less than unity.

3) Third case 0 < « < 1: In addition to the case 2)
phenomena, sky wave radiation will occur. The term uq
becomes purely imaginary (for a lossless substrate, but
complex for a lossy one) and the corresponding branch
cut A = V1 —? is moved on the Re()\) axis. Again
the integration contour must be deformed to avoid this
singularity. Due to the sky wave radiation the reflection
coefficient decreases as o« — 0 or equivalently as the

TEM wave tends towards the normal incidence.

The more complicated integration path occurs in the third case,
for which the integration path and the singularity locations
for the two integrals f. and A(«), can be seen in Fig. 2(a)
and (b), respectively. The first two cases are simpler and
can be easily deduced from the last one by considering the
appropriate movement of singularities to the Im(\) axis as
described above.

VI. NUMERICAL INTEGRATION

The numerical integration of the complex integrals of f. and
A(ce) along the Re(A) axis is carried out by using Romberg
technique [11]. First, the singularities on the positive Re(\)
axis are located. Then, the integration path is divided into small
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sections, especially on the neighborhood of the singularities.
An adaptive Romberg integration is applied to each of these
finite intervals with a 10~° error tolerance. The integration is
performed upto a point close to the singularity and continues
from a point just after the singularity. Logarithmic singularities
can be approached easier and more closely, because of the
slowly varying nature of the logarithm. Considering Ay to
be such a logarithmic singularity, the interval on one side
is taken within the points 0.9\g and (1 — 107°))\, and
the integration resumes on the other side from the point
(1 +107%)Xg to 1.1X¢ and continues. On the other hand,
functions are varying very fast at pole singularities, like f. at
the pole A, = n|2| — o2. So, this pole must be approached

gradually, while at the same time its location must be “exactly”
determined. In the scheme used, A, is approached by intervals
defined by the points 0.8),,0.99, and 0.9999), on one
side and by 1.0001A,,1.01), and 1.2, on the other side.
In this manner the pole is approached to 10=#), and as we
previously mentioned its location is estimated with a 10~
tolerance. Also, the contribution on the pole itself is taken
as a Cauchy principal value. Finally, some more intervals are
taken as fractions of the [0, max(n ,n) )] where the integrals
contribution is expected to be more significant.

For the semi-infinite interval well beyond the singularities, a
progressive Romberg integration is used. Namely, integration
is performed on subintervals of length 1/kgd, until the last
subinterval contribution is less than 1075,

Even though the integration technique described in the last
two sections refers to a lossless substrate, it can also be applied
to lossy ones.

VII. NUMERICAL RESULTS AND DISCUSSIONS

The first LSE mode wavenumber «,,_; is calculated by using
the value given in (26) as an initial guess. Since, o, is always
slightly greater than unity, it is better to plot o, — 1 as
suggested in [9, p. 158]. In this manner, Fig. 3 shows a semi-
logarithmic plot of (a1 — 1) versus the normalized substrate
thickness d/A with the anisotropy ratio as a parameter. The
curve for the isotropic case n,/n, =1 and £, =9.6 of Fig.
3(a) is in a very good agreement with the corresponding one
given in [9]. An interesting observation in Fig. 3(a) is that
keeping €, = &, constant and varying €, = €, we have a
somewhat parallel shift of log(a,,1 — 1) versus d/A. Such a
behavior is encountered also in the isotropic case [9] when
g, is varied. Examining Fig. 3(b), where ¢| is kept constant
and ¢, is varied, we can see that the anisotropy ratio affects
ap.1 — 1 only for thick substrates, while for thin substrates the
three curves are coincided.

One of our first concerns was to check the validity of the
thin substrate (th. subs.) approximation using the results from
the numerical integration (num. int.). A case of an electrically
thin substrate d/X =0.01 is shown in Fig. 4. In Fig. 4(a) the
real part of X{«) or equivalently the phase of the reflection
coefficient versus the propagation constant o = ny sin{¢p)
is plotted, with the anisotropy ratio as a parameter. The
coincidence of the two sets of curves (th. subs. and num.
int.) is obvious. The corresponding curves for the imaginary
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Fig. 3. Wavenumber of the first LSE mode («vp,1). Actually, (ap,1 — 1)
versus the normalized substrate thickness d/X. (a) Varying g = £ for
constant €| = £, = &y. (b) Varying = = &5 = g, for constant £ = &..

part Im X (), which can give the magnitude of the reflection
coefficient as exp{ImX (o)}, are shown in Fig. 4(b). It can
be seen that the anisotropy ratio has no effect in this case.
There is a small deviation between th. subs. approximation
and pum. int. results only for small values of a (near normal
incidence, a —0).

In order to further examine the reflection coefficient behav-
ior with respect to the slab thickness and also to define the
limits of the th. subs. approximation, we have calculated and
plotted both its magnitude and phase versus the normalized
substrate thickness d/A for some constant values of the prop-
agation constant . In Fig. 5 the g is kept constant varying
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TI'() and comparison of the thin substrate approximation and numerical
integration for d/A =0.01. (a) Re{X(«)} or the phase of the reflection
coefficient. (b) Im{X(a)}, which gives the magnitude of the reflection
coefficient.

the ¢ used as a parameter, while variations are done vice
versa in Fig. 6.

Examining Figs. 5(a) and 6(a) for the phase of the reflection
coefficient Re X () a fairly good agreement between th. subs.
approximation and num. int. results can be obtained for thin
substrates. The deviation between them is less than 8% for
substrate thickness upto d/)\ = 0.04, but it is then increased
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Fig. 5. Reflection coefficient I'(a) versus the substrate thickness d/ A, with
o = ny sin(e) = 0.5, for constant €); = ¢ and varying 1 = £, = &y. (a)
Re{X ()} or the phase of the reflection coefficient. (b) Im{X ()}, which
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and at d/A = 0.065 becomes 23% for Fig. 5(a) and 13%
for Fig. 6(a). Concerning the magnitude of the reflection
coefficient [see Figs. 5(b) and 6(b)], we received a significant
deviation between the two approaches. At d/A = 0.04 it
reaches 35% in Fig. 5(b) and 22% in Fig. 6(b). In, fact the
th. subs. approximation fails to account for variations in the
dielectric constant €| = ¢, = ¢, parallel to the ground plane
[Fig. 5(b)]. while it does follow the variations in g = &,
normal to the ground plane, even though the deviation for
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thick substrate is still significant [Fig. 6(b)]. Moreover, the
deviation between th. subs. approximation and num. int. seems
o increase monotonically with £ starting from e; = 1.
Furthermore, a monotonic decrease of the reflection coef-
ficient magnitude [Figs. 5(b) and 6(b)] as a function of an
increasing slab thickness is observed. This is just the expected
behavior, since more energy will be radiated through the
edge opening as the substrate gets thicker. A similar behavior
is observed when ¢, is increased, as shown in Fig. 5(b).
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Moreover, a similar behavior of the reflection coefficient phase
versus d/\ and ¢ can be deduced from Figs. 5(a) and 6(a).
This phase reduction could make impossible the establishment
of transverse resonance conditions in microstrip structures.
For example, the phase could remain negative for all possible
values of the propagation constant (o = 0 to ), as we have
found for the case: n,/n, = 2 and ¢, = 9.6 (which gives
£ | = 24)

An example showing the dependence of the real (conduc-
tance () and imaginary (susceptance) part of the normalized
edge admittance Y. /Y( from the normalized substrate thick-
ness d/)\, appears in Fig. 7(a) and (b), respectively. The
absolute values of (G, and B, can be deduced from these
curves by recalling the expression of Yy = n)/(¢,(od). For
these curves we have p, =1, ¢ =10.2, f = 3 GHz and
Go = 0.0847 - Re(Y,/Yy)/(d/A). Similarly for B, we use
the Im(Y,/Y,) instead of the Re part. The effects of the
dielectric anisotropy on the edge admittance are quite similar
to the above described for the phase and the magnitude of the
reflection coefficient.

The above observations and conclusions could be used as
a guide in applying this reflection coefficient in the analysis
of microstrip lines and patch antennas printed on uniaxial
substrate.

The phase of the reflection coefficient ReX () is involved
in the estimation of the propagation constants or the resonant
frequencies by establishing transverse resonance conditions.
This task requires the solution of transcendental characteristic
equations, which in turn involves the reflection coefficient and
in some cases more than once with different arguments (i.e.
triangular patch antennas). Since the th. subs. approximation
behaves quite well for the ReX (), even at its worst case
with thick substrate and large £ it can be used without any
serious doubts within the solution of such equations. In the
case when better accuracy is required or when d/A and £ are
large, the th. subs. approximation must be used first to get a
solution quite close to the actual one. Afterwards a solution
scheme employing numerical integration for X (a) should be
used to improve the accuracy of the solution. In this manner
time consuming calculations which require the iterative use of
numerical integration are kept at a minimum.

The magnitude of the reflection coefficient is involved in the
calculations of the normalized edge admittance, the normalized
radiated power (1 — |T'|?) and the input impedance of patch
antennas. Since these quantities are usually calculated only
once at each frequency (or for a specified set of input data)
and significant deviations in |I'| values between th. subs.
approximation and num. integration are observed, the use
of the numerical integration in the case of thick substrates
is strongly recommended. In the case of electrically thin
substrates (d/A < 0.02) the th. subs. approximation can be
safely used with an error less than 8%.

VIII. CONCLUSION

A Wiener-Hopf-type solution of the canonical problem
of a TEM wave falling upon the edge of the truncated
upper conductor of a grounded uniaxial anisotropic dielectric
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slab is first summarized. The surface waves characteristic
equations are investigated and explicit expressions for the
LSE and LSM modes turn on conditions are given. The
Sommerfeld-type integrals involved in the expression of the
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reflection coefficient are evaluated numerically and the limits
of the relevant thin substrate approximation are established.
Numerical results show that there are significant effects of the
dielectric anisotropy, which in some cases can be accounted for
only by using numerical integration. Either the thin substrate
approximation or the numerical evaluation for the reflection
coefficient can be used in wide microstrip lines and patch
antenna applications. Recommendations on their use are also
given, based on parametric investigations by varying the
dielectric anisotropy characteristics and the slab thickness.
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